LRU Cache
描述
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
题解
package algorithms
import "container/list"
type LRUCache struct {
capacity int
list *list.List
cache map[int]*list.Element
}
func Constructor(capacity int) LRUCache {
return LRUCache{
capacity: capacity,
list: list.New(),
cache: make(map[int]*list.Element),
}
}
func (l *LRUCache) Get(key int) int {
element, has := l.cache[key]
if !has {
return -1
}
l.list.MoveBefore(element, l.list.Front())
return element.Value.([]int)[1]
}
func (l *LRUCache) Put(key int, value int) {
element, has := l.cache[key]
if has {
element.Value = []int{key, value}
l.list.MoveBefore(element, l.list.Front())
return
}
if l.list.Len()+1 <= l.capacity {
element := l.list.PushFront([]int{key, value})
l.cache[key] = element
return
}
back := l.list.Back()
front := l.list.PushFront([]int{key, value})
l.cache[key] = front
l.list.Remove(back)
delete(l.cache, back.Value.([]int)[0])
}
/**
* Your LRUCache object will be instantiated and called as such:
* obj := Constructor(capacity);
* param_1 := obj.Get(key);
* obj.Put(key,value);
*/